mario
Release 0.0.154

Aug 09, 2019

Contents

1 Mario: Shell pipes in Python 1
LT Features o v o it e e e e e e e e e e e e e e e e e e 2
1.2 Installation L e e e e e e e e e e 2
1.3 Quickstart L e e e e e e e e e e e e e e e 3
1.4 Configuration o ot i e e e e e e e 7
1.5 Plugins o e e e e e e e e e e 7
L6 Q& A . o e 7
2 Contents 9
2.1 Mario: Shell pipesinPython e e 9
22 Installation L. e e e e e e 15
2.3 ASYNCexeCUtion e e e e e e e e e e 16
24 Commandreference L e e e e e e e 17
2.5 Configuration e e e e e e e e e 33
2.6 Contributing e e e e e e e e e e e e e e e 43
27 AUthOTS L e e 45
2.8 Changelog o . e e e e e e 45
29 Q& A 47
Index 49

CHAPTER 1

Mario: Shell pipes in Python

Have you ever wanted to use Python functions directly in your Unix shell? Mario can read and write csv, json, and
yaml; traverse trees, and even do xpath queries. Plus, it supports async commands right out of the box. Build your
own commands with a simple configuration file, and install plugins for even more!

Mario is the plumbing snake helping you build data pipelines in your shell .

https://github.com/python-mario/mario
https://readthedocs.org/projects/python-mario
https://travis-ci.com/python-mario/mario
https://pypi.python.org/pypi/mario
https://codecov.io/gh/python-mario/mario

mario, Release 0.0.154

What time is it in Sydney?

$ mario eval 'pendulum.now("Australia/Sydney")'
-08-06T08:28:43.444247+10:00

1.1 Features

» Execute Python code in your shell.

* Pass Python objects through multi-stage pipelines.

* Read and write csv, json, yaml, toml, xml.

* Run async functions natively.

* Define your own commands in a simple configuration file or by writing Python code.
¢ Install plugins to get more commands.

» Enjoy high test coverage, continuous integration, and nightly releases.

1.2 Installation

1.2.1 Mario

Windows support is hopefully coming soon. Linux and MacOS are supported now.

Get Mario with pip:

’python3.7 -m pip install mario

If you’re not inside a virtualenv, you might get a PermissionsError. In that case, try using:

’python3.7 -m pip install --user mario

or for more isolation, use pipx:

2 Chapter 1. Mario: Shell pipes in Python

https://github.com/pipxproject/pipx/

mario, Release 0.0.154

pipx install —--python python3.7 mario

1.2.2 Mario addons

The mario-addons package provides a number of useful commands not found in the base collection.

Get Mario addons with pip:

’python3.7 -m pip install mario-addons

If you’re not inside a virtualenv, you might get a PermissionsError. In that case, try using:

’python3.7 -m pip install --user mario-addons

or for more isolation, use pipx:

pipx install --python python3.7 mario
pipx inject mario mario-addons

1.3 Quickstart

1.3.1 Basics

Invoke with mario at the command line.

$ mario 1+1
2

Given a csv like this:

$ cat

Use read—-csv—dicts to read each row into a dict:

mario read-csv-dicts < hackers.csv

$

{ : ' : }
{ : :

{

Use map to act on each input item x :

$ mario read-csv-dicts map < hackers.csv
Alice

Bob

Carol

Chain Python functions together with !:

1.3. Quickstart 3

https://mario-addons.readthedocs.io/
https://github.com/pipxproject/pipx/

mario, Release 0.0.154

$ mario read-csv-dicts map
5
3
5

< hackers.csv

or by adding another command

$ mario read-csv-dicts map
5
3
5

map len < hackers.csv

Use x as a placeholder for the input at each stage:

$ mario read-csv-dicts map
42
44
46

< hackers.csv

Automatically import modules you need:

$ mario map
{ 1, : 4, . 4, : 2}

<<<mississippi

You don’t need to explicitly call the function

some_function. For example, instead of

with some_function (x); just use the function’s name,

$ mario map

try

$ mario map len

1.3.2 More commands

Here are a few commands. See Command reference for the complete set, and get even more from mario-addons.

eval

Use eval to evaluate a Python expression.

% mario
2019-01-01 01:23:45.562736

Chapter 1. Mario: Shell pipes in Python

https://python-mario.readthedocs.io/en/latest/cli_reference.html
https://mario-addons.readthedocs.org/

mario, Release 0.0.154

map

Use map to act on each input item.

$ mario map

aa
bbbb

filter

Use filter to evaluate a condition on each line of input and exclude false values.

S mario filter

bb
ccc

apply

Use apply to act on the sequence of items.

$ mario apply

chain

Use chain to flatten a list of lists into a single list, like itertools.chain.from_iterable.

For example, after generating a several rows of items,

$ mario read-csv-tuples

use chain to put each item on its own row:

$ mario read-csv-tuples chain

(continues on next page)

1.3. Quickstart

https://docs.python.org/3/library/itertools.html#itertools.chain.from_iterable

mario, Release 0.0.154

(continued from previous page)

=g

D Q Hh D QO QO 9 Q9

async-map

Making sequential requests is slow. These requests take 16 seconds to complete.

mario map it asks.get ! x.json() ["url"]' <<EOF

https://httpbin.org/delay/5
https://httpbin.org/delay/1
https://httpbin.org/delay/2
https://httpbin.org/delay/3
https://httpbin.org/delay/4
0.51s user

0.02s system

16.460 total

Concurrent requests can go much faster. The same requests now take only 6 seconds. Use async-map, or
async—filter, or reduce with await some_async_function to get concurrency out of the box.

% mario async-map 'awailt asks.get | x.json () ["url"]' <<EOF
/httpbin.org/delay
/ /httpl

://httpbin.org/delay/5
://httpbin.org/delay/1
://httpbin.org/delay/2
://httpbin.org/delay/3
://httpbin.org/delay/4

user

system

total

6 Chapter 1. Mario: Shell pipes in Python

mario, Release 0.0.154

1.4 Configuration

Define new commands and set default options. See Configuration reference for details.

1.5 Plugins

Add new commands like map and reduce by installing Mario plugins. You can try them out without installing by
adding them to any . py file in your ~/.config/mario/modules/.

Share popular commands by installing the mario-addons package.

1.6 Q&A

1.6.1 What’s the status of this package?

* This package is experimental and is subject to change without notice.

* Check the issues page for open tickets.

1.6.2 Why another package?

A number of cool projects have pioneered in the Python-in-shell space. I wrote Mario because I didn’t know these
existed at the time, but now Mario has a bunch of features the others don’t (user configuration, multi-stage pipelines,
async, plugins, etc).

* https://github.com/Russell9 1/pythonpy
* http://gfxmonk.net/dist/doc/piep/
e https://spy.readthedocs.io/en/latest/intro.html

* https://github.com/ksamuel/Pyped

https://github.com/ircflagship2/pype

1.4. Configuration 7

config_reference.html
https://mario-addons.readthedocs.io/en/latest/readme.html
https://www.github.com/python-mario/mario/issues
https://github.com/Russell91/pythonpy
http://gfxmonk.net/dist/doc/piep/
https://spy.readthedocs.io/en/latest/intro.html
https://github.com/ksamuel/Pyped
https://github.com/ircflagship2/pype

mario, Release 0.0.154

8 Chapter 1. Mario: Shell pipes in Python

CHAPTER 2

Contents

2.1 Mario: Shell pipes in Python

Have you ever wanted to use Python functions directly in your Unix shell? Mario can read and write csv, json, and
yaml; traverse trees, and even do xpath queries. Plus, it supports async commands right out of the box. Build your
own commands with a simple configuration file, and install plugins for even more!

Mario is the plumbing snake helping you build data pipelines in your shell .

https://github.com/python-mario/mario
https://readthedocs.org/projects/python-mario
https://travis-ci.com/python-mario/mario
https://pypi.python.org/pypi/mario
https://codecov.io/gh/python-mario/mario

mario, Release 0.0.154

What time is it in Sydney?

$ mario eval 'pendulum.now("Australia/Sydney")'
-08-06T08:28:43.444247+10:00

2.1.1 Features

» Execute Python code in your shell.

 Pass Python objects through multi-stage pipelines.

* Read and write csv, json, yaml, toml, xml.

* Run async functions natively.

* Define your own commands in a simple configuration file or by writing Python code.
* Install plugins to get more commands.

* Enjoy high test coverage, continuous integration, and nightly releases.

2.1.2 Installation
Mario

Windows support is hopefully coming soon. Linux and MacOS are supported now.

Get Mario with pip:

’python3.7 -m pip install mario

If you’re not inside a virtualenv, you might get a PermissionsError. In that case, try using:

’python3.7 -m pip install --user mario

or for more isolation, use pipx:

’pipx install --python python3.7 mario

10 Chapter 2. Contents

https://github.com/pipxproject/pipx/

mario, Release 0.0.154

Mario addons

The mario-addons package provides a number of useful commands not found in the base collection.

Get Mario addons with pip:

’python3.7 -m pip install mario-addons

If you’re not inside a virtualenv, you might get a PermissionsError. In that case, try using:

’python3.7 -m pip install --user mario-addons

or for more isolation, use pipx:

pipx install —--python python3.7 mario
pipx inject mario mario-addons

2.1.3 Quickstart
Basics

Invoke with mario at the command line.

$ mario 1+1
2

Given a csv like this:

$ cat

Use read—-csv—dicts to read each row into a dict:

mario read-csv-dicts < hackers.csv

$

{ : ' : }
{ : :

{

Use map to act on each input item x :

$ mario read-csv-dicts map < hackers.csv
Alice

Bob

Carol

Chain Python functions together with !:

$ mario read-csv-dicts map < hackers.csv
5
3
5

or by adding another command

2.1. Mario: Shell pipes in Python 11

https://mario-addons.readthedocs.io/
https://github.com/pipxproject/pipx/

mario, Release 0.0.154

$ mario read-csv-dicts map map len < hackers.csv
5
3
5

Use x as a placeholder for the input at each stage:

$ mario read-csv-dicts map < hackers.csv
42
44
46

Automatically import modules you need:

$ mario map <<<mississippi
{ 1, : 4, : 4, : 2}

You don’t need to explicitly call the function with some_function (x); just use the function’s name,
some_function. For example, instead of

$ mario map

try

$ mario map len

More commands

Here are a few commands. See Command reference for the complete set, and get even more from mario-addons.

eval

Use eval to evaluate a Python expression.

% mario
2019-01-01 01:23:45.562736

map

Use map to act on each input item.

12 Chapter 2. Contents

https://python-mario.readthedocs.io/en/latest/cli_reference.html
https://mario-addons.readthedocs.org/

mario, Release 0.0.154

$ mario map

aa
bbbb

filter

Use filter to evaluate a condition on each line of input and exclude false values.

$ mario filter

bb
ccc

apply

Use apply to act on the sequence of items.

$ mario apply

chain

Use chain to flatten a list of lists into a single list, like itertools.chain.from_iterable.

For example, after generating a several rows of items,

$ mario read-csv-tuples

use chain to put each item on its own row:

$ mario read-csv-tuples chain

(continues on next page)

2.1. Mario: Shell pipes in Python

13

https://docs.python.org/3/library/itertools.html#itertools.chain.from_iterable

mario, Release 0.0.154

(continued from previous page)

H-PQ DO QO

async-map

Making sequential requests is slow. These requests take 16 seconds to complete.

% mario map ks.get ! x.json() ["url"]' <<EOF
“p://httpbin.orz
//httpbin.
//httpbin.
://httpbin.

o://httpbin.o

https://httpbin.org/delay/5
https://httpbin.org/delay/1
https://httpbin.org/delay/2
https://httpbin.org/delay/3
https://httpbin.org/delay/4
0.51s user

0.02s system

16.460 total

Concurrent requests can go much faster. The same requests now take only 6 seconds. Use async-map, or
async-filter, or reduce with await some_async_function to get concurrency out of the box.

% mario async-map ' asks.get ! x.json() ["url"]' <<EOF
http://httpbin.org/del

http://httpbin.

//httpbin.
//httpbin.
p://httpbin.org/d

://httpbin.org/delay/5
://httpbin.org/delay/1
://httpbin.org/delay/2
://httpbin.org/delay/3
://httpbin.org/delay/4

user

system

total

2.1.4 Configuration

Define new commands and set default options. See Configuration reference for details.

14 Chapter 2. Contents

config_reference.html

mario, Release 0.0.154

2.1.5 Plugins

Add new commands like map and reduce by installing Mario plugins. You can try them out without installing by
adding them to any . py file in your ~/.config/mario/modules/.

Share popular commands by installing the mario-addons package.

216 Q&A

What’s the status of this package?

 This package is experimental and is subject to change without notice.

» Check the issues page for open tickets.

Why another package?

A number of cool projects have pioneered in the Python-in-shell space. I wrote Mario because I didn’t know these
existed at the time, but now Mario has a bunch of features the others don’t (user configuration, multi-stage pipelines,
async, plugins, etc).

* https://github.com/Russell9 1/pythonpy

* http://gfxmonk.net/dist/doc/piep/

* https://spy.readthedocs.io/en/latest/intro.html
* https://github.com/ksamuel/Pyped

e https://github.com/ircflagship2/pype

2.2 Installation

2.2.1 Mario

Windows support is hopefully coming soon. Linux and MacOS are supported now.

Get Mario with pip:

’python3.7 -m pip install mario

If you’re not inside a virtualenv, you might get a PermissionsError. In that case, try using:

’python3.7 -m pip install --user mario

or for more isolation, use pipx:

’pipx install --python python3.7 mario

2.2.2 Mario addons

The mario-addons package provides a number of useful commands not found in the base collection.

Get Mario addons with pip:

2.2. Installation 15

https://mario-addons.readthedocs.io/en/latest/readme.html
https://www.github.com/python-mario/mario/issues
https://github.com/Russell91/pythonpy
http://gfxmonk.net/dist/doc/piep/
https://spy.readthedocs.io/en/latest/intro.html
https://github.com/ksamuel/Pyped
https://github.com/ircflagship2/pype
https://github.com/pipxproject/pipx/
https://mario-addons.readthedocs.io/

mario, Release 0.0.154

’python3.7 -m pip install mario-addons

If you’re not inside a virtualenv, you might get a PermissionsError. In that case, try using:

’python3.7 -m pip install --user mario-addons

or for more isolation, use pipx:

pipx install —--python python3.7 mario
pipx inject mario mario-addons

2.3 Async execution

Making sequential requests is slow. These requests take 16 seconds to complete.

% mario map s.get ! x.json() ["url"]' <<EOEF

http: httpbin.orc

o://httg
httpl
http .
httpbin.orc

https://httpbin.org/delay/5
https://httpbin.org/delay/1
https://httpbin.org/delay/2
https://httpbin.org/delay/3
https://httpbin.org/delay/4
0.51s user

0.02s system

16.460 total

Concurrent requests can go much faster. The same requests now take only 6 seconds. Use async-map, or
async—filter,or reduce with await some_async_function to get concurrency out of the box.

% mario async-map 'await asks.get ! x.7json () ["url"]' <<EOF
http: httpbin Y S
http://httpl
http://httpl
http: htt
http://httpbin.or
EOF
https://httpbin.org/delay/5
https://httpbin.org/delay/1
https://httpbin.org/delay/2
https://httpbin.org/delay/3
https://httpbin.org/delay/4
0.49s user

0.03s system

5.720 total

g
g

rg A
g
g

async-map and async-filter values are handled in streaming fashion, while retaining the order of the input
items in the output. The order of function calls is not constrained — if you need the function to be called with items in
a specific order, use the synchronous version.

Making concurrent requests, each response is printed one at a time, as soon as (1) it is ready and (2) all of the preceding
requests have already been handled.

16 Chapter 2. Contents

https://github.com/pipxproject/pipx/

mario, Release 0.0.154

For example, the 3 seconds item is ready before the preceding 4 seconds item, but it is held until the 4
seconds is ready because 4 seconds was started first, so the ordering of the input items is maintained in the
output.

% mario —-—-exec-before
—TIME=now(); print ("Elapsed tim
START_TIME) .
N e / obin g/ /1

imp

Elapsed | Response size
1 seconds | 297 bytes
2 seconds | 297 bytes
4 seconds | 297 bytes
3 seconds | 297 bytes

2.4 Command reference

2.4.1 mario
Mario: Python pipelines for your shell.

Docs: https://python-mario.readthedocs.org
Addons: https://mario-addons.readthedocs.org

Configuration:
Declarative config: /home/docs/.config/mario/config.toml
Python modules: /home/docs/.config/mario/m/*.py

mario [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...J...

Options

——max-—-concurrent <max_concurrent>

——-exec-before <exec_before>
Python source code to be executed before any stage.

—-base—-exec-before <base_exec_before>
Python source code to be executed before any stage; typically set in the user config file. Combined with —exec-
before value.

——-version
Show the version and exit.

2.4. Command reference 17

https://python-mario.readthedocs.org
https://mario-addons.readthedocs.org

mario, Release 0.0.154

Traversals
apply

Apply code to the iterable of items.

The code should take an iterable and it will be called with the input items. The items iterable will be converted to a
list before the code is called, so it doesn’t work well on very large streams.

For example,

$ mario map int apply sum

mario apply [OPTIONS] CODE

Options

——autocall, —-—no-autocall
Automatically call the function if “x” does not appear in the expression. Allows map len instead of map
len(x).

——-exec-before <exec_before>
Execute code in the function’s global namespace.

Arguments

CODE
Required argument

chain

Concatenate a sequence of input iterables together into one long iterable.
Converts an iterable of iterables of items into an iterable of items, like itertools.chain.from_iterable.

For example,

$ mario

[rL, 211

$ mario chain
[1, 2]

mario chain [OPTIONS]

18 Chapter 2. Contents

https://docs.python.org/3/library/itertools.html#itertools.chain.from_iterable

mario, Release 0.0.154

eval

Evaluate a Python expression.
No input items are used.

For example,

$ mario 1+1
2

mario [OPTIONS] CODE

Options

——autocall, --no-autocall
Automatically call the function if “x” does not appear in the expression. Allows map len instead of map
len (x).

——exec-before <exec_before>
Execute code in the function’s global namespace.

Arguments

CODE
Required argument

filter

Keep input items that satisfy a condition.
Order of input items is retained in the output.

For example,

$ mario filter

0}

mario filter [OPTIONS] CODE

Options

——autocall, —--no-autocall
Automatically call the function if “x” does not appear in the expression. Allows map len instead of map
len (x).

2.4. Command reference 19

mario, Release 0.0.154

——exec-before <exec_before>
Execute code in the function’s global namespace.

Arguments

CODE
Required argument

map

Run code on each input item.

Each item is handled in the order it was received, and also output in the same order. For less strict ordering and
asynchronous execution, see async-map and async-map-unordered.

For example,

$ mario map

aa
bb
cc

mario map [OPTIONS] CODE

Options

——autocall, —-—-no-autocall
Automatically call the function if “x” does not appear in the expression. Allows map len instead of map
len (x).

——-exec-before <exec_before>
Execute code in the function’s global namespace.

Arguments

CODE
Required argument

reduce

Reduce input items with code that takes two arguments, similar to functools. reduce.

For example,

$ mario reduce map int operator.mul

(continues on next page)

20 Chapter 2. Contents

mario, Release 0.0.154

(continued from previous page)

120

mario reduce [OPTIONS] FUNCTION_NAME

Options

——exec-before <exec_before>
Execute code in the function’s global namespace.

Arguments

FUNCTION_NAME
Required argument

Commands for calling code on data.

Async traversals
async-apply

Apply code to an async iterable of items.

The code should take an async iterable.

mario async-apply [OPTIONS] CODE

Options

——autocall, —--no-autocall

Automatically call the function if “x” does not appear in the expression.

len (x).

——exec-before <exec_before>
Execute code in the function’s global namespace.

Arguments

CODE
Required argument

async-chain

Concatenate a sequence of input async iterables into one long async iterable.

Allows map len instead of map

Converts an async iterable of async iterables of items into an async iterable of items, like itertools.chain.from_iterable

for async iterables.

2.4. Command reference

21

https://docs.python.org/3/library/itertools.html#itertools.chain.from_iterable

mario, Release 0.0.154

mario async-chain [OPTIONS]

async-filter

Keep input items that satisfy an asynchronous condition.

For example,

$ mario async-filter

http://httpbin.org/delay/1
http://httpbin.org/delay/3

mario async-filter [OPTIONS] CODE

Options

——autocall, —--no-autocall
Automatically call the function if “x” does not appear in the expression. Allows map len instead of map
len (x).

——exec-before <exec_before>
Execute code in the function’s global namespace.

Arguments

CODE
Required argument

async-map

Run code on each input item asynchronously.

The order of inputs is retained in the outputs. However, the order of inputs does not determine the order in which each
input is handled, only the order in which its result is emitted. To keep the order in which each input is handled, use the
synchronous version, map.

In this example, we make requests that have a server-side delay of specified length. The input order is retained in the
output by holding each item until its precedents are ready.

$ mario async-map

(continues on next page)

22 Chapter 2. Contents

mario, Release 0.0.154

(continued from previous page)

https://httpbin.org/delay/5
https://httpbin.org/delay/1
https://httpbin.org/delay/2
https://httpbin.org/delay/3
https://httpbin.org/delay/4

mario async-map [OPTIONS] CODE

Options

——autocall, —-—no-autocall
Automatically call the function if “x” does not appear in the expression. Allows map len instead of map
len (x).

——exec-before <exec_before>
Execute code in the function’s global namespace.

Arguments

CODE
Required argument

async-map-unordered

Run code on each input item asynchronously, without retaining input order.

Each result is emitted in the order it becomes ready, regardless of input order. Input order is also ignored when
determining in which order to start handling each item. Results start emitting as soon as the first one is ready. It also
saves memory because it doesn’t require accumulating results while waiting for previous items to become ready. For
stricter ordering, see map or async_map.

In this example, we make requests that have a server-side delay of specified length. The input order is lost but the
results appear immediately as they are ready (the delay length determines the output order):

$ mario async-map-unordered

https://httpbin.org/delay/1
https://httpbin.org/delay/2
https://httpbin.org/delay/3
https://httpbin.org/delay/4
https://httpbin.org/delay/5

mario async-map-unordered [OPTIONS] CODE

2.4. Command reference 23

mario, Release 0.0.154

Options

——autocall, —--no-autocall
Automatically call the function if “x” does not appear in the expression. Allows map len instead of map
len (x).

——exec-before <exec_before>
Execute code in the function’s global namespace.

Arguments

CODE
Required argument

Commands for asynchronously calling code on data.

Read

read-csv-dicts

Read a csv file into Python dicts. Given a csv like this:

try:

$ mario read-csv-dicts <<EOF
name, age

Alice, 21

Bob, 22

EOF

{'name': 'Alice', 'age': '21'}
{'name': 'Bob', 'age': '22'}

mario read-csv-dicts [OPTIONS]

Options

——dialect <dialect>
CSV dialect (See https://docs.python.org/3/library/csv.html)

Options excellexcel-tablunix

read-csv-tuples

Read a csv file into Python tuples. Given a csv like this:

try:

$ mario read-csv-tuples <<EOF
Alice, 21

Bob, 22

Carol,

EOF

('Alice', '21")

(continues on next page)

24 Chapter 2. Contents

https://docs.python.org/3/library/csv.html

mario, Release 0.0.154

(continued from previous page)

('Bob', '227")
('Carol', "23")

mario read-csv-tuples [OPTIONS]

Options

——dialect <dialect>
CSV dialect (See https://docs.python.org/3/library/csv.html)

Options excellexcel-tablunix

read-json

Read a single json string into a Python object.

For example,

$ mario read-json <<EOF

[

om n "

. . "y 2aan ~~a . o) |
1ame" : Alice", age": 2 ,

{"name": "Bob", "age": 22}

EOF
[{'name': 'Alice', 'age': 21}, {'name': 'Bob', 'age': 22}]

mario read-json [OPTIONS]

read-json-array

Read a single json string into a Python object.

For example,

$ mario read-json-array <<EOF
[

(n "Alice"

name" :

"name": "Bob", "ac

$ mario read-json-array map 'x["age"]' <<EOF

[
"name": "Alice", "age": 21},
"name": HE,;l;H, "rﬂ‘j',‘” . _L}
EOF
21
22

2.4. Command reference 25

https://docs.python.org/3/library/csv.html

mario, Release 0.0.154

mario read-json-array [OPTIONS]

read-jsonl

Read a sequence of json entities into Python objects.

For example,

$ mario read-jsonl

mario read-jsonl [OPTIONS]

read-text

Read input lines as a block of text, joining lines with a line separator.

For example,

$ mario read-text

Lorem ipsum dolor sit amet,
consectetur adipiscing elit,

$ mario read-text map len

56

mario read-text [OPTIONS]

Options

-—-sep <sep>
Separator to join input lines with

read-toml

Read a toml document into a Python object.

For example,

26

Chapter 2. Contents

mario, Release 0.0.154

$ mario read-toml

{ : [q : ' 21}, A : ’ T 2211}

mario read-toml [OPTIONS]

read-xml

Read xml into a Python object.

For example,

$ mario read-xml

mario read-xml [OPTIONS]

Options
——process—namespaces
read-yaml

Read a yaml document into a Python object.

For example,

$ mario read-yaml

[{ : boA : booA : H

mario read-yaml [OPTIONS]

2.4. Command reference 27

mario, Release 0.0.154

read-yaml-array

Read a yaml document into a Python object.

For example,

$ mario read-yaml-array

{ : }
{ : }
{ }

mario read-yaml-array [OPTIONS]

Write

write-csv-dicts

Write a list of dicts to csv.

For example,

$ mario read-json write-csv-dicts —--no-header

Alice, 21
Bob, 22

mario write-csv-dicts [OPTIONS]

Options
—-header, —--no-header
Whether to write the dict keys as the first row

——dialect <dialect>
CSV dialect (See https://docs.python.org/3/library/csv.html)

Options excellexcel-tablunix

28

Chapter 2. Contents

https://docs.python.org/3/library/csv.html

mario, Release 0.0.154

write-csv-tuples

Write a list of tuples to csv.

For example,

$ mario read-json write-csv-tuples

name, age
Alice, 21
Bob, 22

mario write-csv-tuples [OPTIONS]

Options

——dialect <dialect>
CSV dialect (See https://docs.python.org/3/library/csv.html)

Options excellexcel-tablunix

write-json

Serialize each input item to its json representation.

For example,

$ mario write—-json —-—-no-pretty
[, 2, 1

Use the ——indent option to set the indentation level:

mario write-json [OPTIONS]

Options

——pretty, ——no—-pretty

write-json-array

Write the input sequence into a json array.

$ mario read-json-array write-json-array map str.rstrip

(continues on next page)

2.4. Command reference 29

https://docs.python.org/3/library/csv.html

mario, Release 0.0.154

(continued from previous page)

i
{
'21
b,
{
.7.7 ,
)

mario write-json—-array [OPTIONS]

Options

——pretty, ——no—-pretty

write-jsonl

Write a sequence to newline-separated json.

$ mario read-json write-—jsonl

{ : , : 21}
{ : , : 22}

mario write-jsonl [OPTIONS]

write-toml

Write each input item to its toml representation.

For example,

$ mario read-json write-toml map str.rstrip

(continues on next page)

30

Chapter 2. Contents

mario, Release 0.0.154

(continued from previous page)

[[persons]]
name =
age = 21

[[persons]]
name =
age = 22

mario write-toml [OPTIONS]

write-xml

Write a mapping to xml string.

For example,

$ mario write—-xml
<?xml version= encoding= ?>
<foo>
<bar>1</bar>
</foo>

mario write-xml [OPTIONS]

Options

——pretty, —--no-pretty
Pretty-print the output

write-yaml

Write a yaml document.

$ mario read-json write-yaml map str.rstrip

(continues on next page)

2.4. Command reference 31

mario, Release 0.0.154

(continued from previous page)

- age: 21
name: Alice
- age: 22

name: Bob

mario write-yaml [OPTIONS]

meta

Commands about using mario.

mario meta [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...

pip

Run pip in the environment that mario is installed into.

Arguments are forwarded to pip.

mario meta pip [OPTIONS] [PIP_ARGS]...

Arguments

PIP_ARGS
Optional argument(s)

test

Run all declarative command tests from plugins and config.
Executes each test in the command. tests field with pytest.

Default pytest args: —vvv —--tb=short

mario meta [OPTIONS] [PYTEST_ARGS]...

Arguments

PYTEST_ ARGS
Optional argument(s)

Commands about using mario.

mario meta [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...

Mario: Python pipelines for your shell.

32

Chapter 2. Contents

mario, Release 0.0.154

Docs: https://python-mario.readthedocs.org
Addons: https://mario-addons.readthedocs.org

Configuration:
Declarative config: /home/docs/.config/mario/config.toml
Python modules: /home/docs/.config/mario/m/*.py

mario [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

Options

—-max—concurrent <max_concurrent>

——exec-before <exec_before>
Python source code to be executed before any stage.

—-base—-exec-before <base_exec_before>
Python source code to be executed before any stage; typically set in the user config file. Combined with —exec-
before value.

——version
Show the version and exit.

2.5 Configuration

The configuration file is in toml format. The file location follows the freedesktop.org standard. Check the location on
your system by running mario --help:

)

% mario —--help
Usage: mario [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...J]...

Mario: Python pipelines for your shell.
GitHub: https://github.com/python-mario/mario
Configuration:

Declarative config: /home/user/.config/mario/config.toml
Python modules: /home/user/.config/mario/m/

2.5.1 Config modules

Mario will make the m package available at startup. Define any functions you want for your commands in a file in the
m/ directory. For example, if you define a file called m/code . py in your config directory,

def increment (number) :
return number + 1

2.5. Configuration 33

https://python-mario.readthedocs.org
https://mario-addons.readthedocs.org
https://github.com/toml-lang/toml
https://www.freedesktop.org/wiki/Software/xdg-user-dirs/

mario, Release 0.0.154

you can use m. code . increment in your commands, like this:

o

% mario map

Any code that needs to run at startup, such as defining a new command, can be placedinm/__init__ .py (orin the
declarative config; see Declarative configuration).

You also can add functions directly to the m namespace by placing theminm/__init__ .py. For example, defining
increment inm/__init_ .py

def increment (number) :
return number + 1

allows invoking m. increment, like this:

)

% mario map

But note that Mario executesm/__init__ .py at startup, so code placed in that file may affect startup time.

2.5.2 Declarative config
The declarative configuration is in mario/mario.toml. For example, on Ubuntu we use ~/.config/mario/
config.toml.
In the declarative configuration you can:
* set default values for the mario command-line options, and

* define your own mario commands, like map, filter, or read—csv. See Command configuration schema for
the command format specification.

You can set any of the mario command-line options in your config. For example, to set a different default value for
the concurrency maximum mario —--max-concurrent, add max_concurrent to your config file. Note the
configuration file uses underscores as word separators, not hyphens.

~/.config/mario/config.toml

max_concurrent = 10

then just use mario as normal.

34 Chapter 2. Contents

mario, Release 0.0.154

The base_exec_before option allows you to define any Python code you want to execute before your commands
run. Your commands can reference names defined in the base_exec_before. This option can be supplemented
by using the ——exec-before option on the command line to run additional code before your commands.

~/.config/mario/config.toml
base_exec_before = """

from itertools import =
from collections import Counter

Then you can directly use the imported objects without referencing the module.

% mario map <<<
{ 1, : 1, : 2, : 1}
{ 1, : 1, : 1, 1, : 1}

Custom commands

Define new commands in your config file which provide commands to other commands. For example, this config adds
a jsonl command for reading jsonlines streams into Python objects, by calling calling out to the map traversal.

Load jsonlines

[[command]]
name = "jsonl"
help = "Load jsonlines into python objects."

[[command.stages]]

command = "map"
params = {code="json.loads"}

Now we can use it like a regular command:

% mario Jjsonl <<<
1, : 2}
5, : 9}

———

The new command jsonl can be used in pipelines as well. To get the maximum value in a sequence of jsonlines
objects:

$ mario jsonl map apply max <<<
5

Convert yaml to json

Convenient for removing trailing commas.

2.5. Configuration 35

mario, Release 0.0.154

% mario yml2json <<<'/{
{"X": 1}

[[command]]
name = "yml2json"
help = "Convert yaml to Jjson"

[[command.stages]]
command = "read-text"

[[command.stages]]
command = "map"
params = {code="yaml.safe_load ! json.dumps"}

Search for xml elements with xpath

Pull text out of xml documents.

% mario xpath '//' map 'x.text' <<EOF
<slide type="all">

Overview
Anything
can be
Or

also

[[command]]
name="xpath"
help = "Find xml elements matching xpath query."
arguments = [{name="query", type="str"}]
inject_values=["query"]

[[command.stages]]
command = "map"

[[command.stages]]

command = "map"
params = {code="x.encode() ! io.BytesIO ! lxml.etree.parse ! x.findall (query) !
—list" }

[[command.stages]]
command="chain"

Generate json objects

age=21 hobbies=["running"]'

21, "hobbies": ["running"]}

36 Chapter 2. Contents

mario, Release 0.0.154

[[command]]

name="7jo"
help="Make json objects"

arguments=[{name="pairs", type="str"}]

inject_values=["pairs"]

[[command.stages]]
command = "eval"
params = {code="pairs"}

[[command.stages]]
command = "map"

params = {code="shlex.split (x, posix=False)"}

[[command.stage]]
command = "chain"

[[command.stages]]
command = "map"

params = {code="x.partition('=") ! [x[0],

—Za-z]+)$', r'\"\\g<value>\"', x[2]))]1"}
[[command.stages]]
command = "apply"

params = {"code"="dict"}

[[command.stages]]

ast.literal_eval (re.sub(r'” (?P<value>[A-

command = "map"
params = {code="json.dumps"}
Read csv file

Read a csv file into Python dicts. Given a csv like this:

)

% cat names.csv
name, age
Alice, 21

Bob, 25

try:

% mario csv < names.csv
' v

{'name': 'Alice', 'age': '21"'}
{'name': 'Bob', 'age': '25'}

base_exec_before = """
import csv
import typing as t

def read_csv(
file, header: bool, xxkwargs
) —> t.Iterable[t.Dict[t.Union[str, int],

str]]:

(continues on next page)

2.5. Configuration

37

mario, Release 0.0.154

(continued from previous page)

"Read csv rows into an iterable of dicts."
rows = list (file)

first_row = next (csv.reader (rows))

if header:
fieldnames = first_row
reader = csv.DictReader (rows, fieldnames=fieldnames, xxkwargs)
return list (reader) [1:]

fieldnames = range(len(first_row))
return csv.DictReader (rows, fieldnames=fieldnames, #**kwargs)

[[command]]

name = "csv"

help = "Load csv rows into python dicts. With --no-header, keys will be numbered
—from 0."

inject_values=["delimiter", "header"]

[[command.options]]

name = "--delimiter"
default = ", "
help = "field delimiter character"

[[command.options]]

name = "--header/--no-header"
default=true
help = "Treat the first row as a header?"

[[command.stages]]
command = "apply"
params = {code="read_csv(x, header=header, delimiter=delimiter)"}

[[command.stages]]
command = "chain"

[[command.stages]]
command = "map"
params = {code="dict (x)"}

Command configuration schema

At the top level, add new commands with a [[command]] heading, documented as CommandSpecschema in the
tables.

CommandSpecSchema

38 Chapter 2. Contents

mario, Release 0.0.154

type | object
definition
* A new command.
properties
e arguments arguments
Arguments accepted by the new command.
type | array
items
1 type | object
ArgumentSchema
* help help
Long-form documentation of the command. Will be interpreted as ReStructuredText
markup.
type string
default None
* hidden hidden
Hide this command on the help page.
type | boolean

* inject_values

inject_values

CLI parameters to be injected into the local namespace, accessible by the executing
commands.

type | array
items
e inject_values
type string
* name name
Name of the new command.
type | string
* options options
Options accepted by the new command.
type | array
items
- type | object
OptionSchema
* section section
Name of the documentation section in which the new command should appear.
type | string
* short_help short_help
Single-line CLI description.
type string
default None
* stages stages
List of pipeline command stages that input will go through.
type | array
items
1 type | object
CommandStageSchema
* tests tests
List of specifications to test the new command.
type | array
items
1 | type | object

Continued on next page

2.5. Configuration

39

mario, Release 0.0.154

Table 1 — continued

from previous page

\ | CommandTestSchema
OptionSchema
type ‘ object
definition
* A command line named option for a new command.
properties
* choices choices
List of allowed string values.
type array
default None
items
choices
type string
¢ default Default value.
type | string
* help help
Documentation for the option.
type string
default None
* hidden hidden
Whether the option is hidden from help.
type boolean
default False
¢ is_flag is_flag
Whether the option is a boolean flag.
type boolean
default False
* multiple multiple
Whether multiple values can be passed.
type | boolean
* nargs nargs
Number of instances expected. Pass -1 for variadic.
type number
format integer
* name Name of the option. Usually prefixed with - or —.
type | string
* required required
Whether the option is required.
type boolean
default False
* type Name of the type. int, str, bool, float accepted.
type | string
40 Chapter 2. Contents

mario, Release 0.0.154

CommandStageSchema
type | object
definition
* A single stage of a new command pipeline.
properties
* command command
Name of the base command
type | string
* params params

Mapping from new command param name (str) to value (any json type).

type | object

* remap_params

remap_params

Provide new names for the parameters, different from the base command parameters’
names

type | array
items
type | object
RemapParamSchema
RemapParamSchema
type \ object
definition
* Translation between the name of a base command’s parameter and the name of the new command’s parame-
ter.
properties
* new new
New name of the parameter.
type | string
* old old
Old name of the parameter.
type | string

2.5. Configuration

41

mario, Release 0.0.154

CommandTestSchema
type | object
definition
* A test of a new command.
properties
* input input
String passed on stdin to the program.
type | string
* invocation invocation

Command line arguments to mario. (Don’t include mario.)

type | array
items
L invocation
type string
e output output
Expected string output from the program.
type | string
ArgumentSchema
type object
definition
* A command-line positional argument for a new command.
properties
* choices choices
List of allowed string values.
type array
default None
items
¢ choices
type | string
* nargs nargs
Number of instances expected. Pass -1 for variadic.
type number
default None
format integer
* name Name of the argument.
type | string
* required required
Whether the argument is required.
type boolean
default True
* type Name of the type. int, str, bool, float accepted.
type | string
42 Chapter 2. Contents

mario, Release 0.0.154

2.6 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

2.6.1 Bug reports

When reporting a bug please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

2.6.2 Documentation improvements

mario could always use more documentation, whether as part of the official mario docs, in docstrings, or even on the
web in blog posts, articles, and such.

» Use semantic newlines in reStructuredText files (files ending in . rst):

This is a sentence.
This is another sentence.

* If you start a new section, add two blank lines before and one blank line after the header, except if two headers
follow immediately after each other:

Last line of previous section.

First line of new section.

* If you add a new feature, demonstrate its awesomeness on the examples page!

Updating the changelog

If your change is noteworthy, there needs to be a changelog entry so our users can learn about it!

To avoid merge conflicts, we use the towncrier package to manage our changelog. t owncrier uses independent files
for each pull request — so called news fragments — instead of one monolithic changelog file. On release, those news
fragments are compiled into our CHANGELOG. rst.

You don’t need to install towncrier yourself, you just have to abide by a few simple rules:

e For each pull request, add a new file into changelog.d with a filename adhering to the pr#.
(change |deprecation|breaking) .rst schema: For example, changelog.d/42.change.rst
for a non-breaking change that is proposed in pull request #42.

* As with other docs, please use semantic newlines within news fragments.

2.6. Contributing 43

https://github.com/python-mario/mario/issues
https://rhodesmill.org/brandon/2012/one-sentence-per-line/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://github.com/python-attrs/attrs/blob/master/docs/examples.rst
https://pypi.org/project/towncrier
https://rhodesmill.org/brandon/2012/one-sentence-per-line/

mario, Release 0.0.154

* Wrap symbols like modules, functions, or classes into double backticks so they are rendered in a monospace
font.

* Wrap arguments into asterisks like in docstrings: these or attributes.

* If you mention functions or other callables, add parentheses at the end of their names: mario. func () or
mario.Class.method (). This makes the changelog a lot more readable.

* Prefer simple past tense or constructions with “now”. For example:
— Added mario.func().

— mario.func () now doesn’t crash the Large Hadron Collider anymore when passed the foobar argu-
ment.

* If you want to reference multiple issues, copy the news fragment to another filename. towncrier will merge
all news fragments with identical contents into one entry with multiple links to the respective pull requests.

Example entries:

Added = mario.func()
The feature really x*is* awesome.

or:

lario.func ()~ now doesn't crash the Large Hadron Collider anymore when,
—passed the xfoobar* argument.
The bug really x*wasx* nasty.

2.6.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/python-mario/mario/issues.
If you are proposing a feature:

» Explain in detail how it would work.

* Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that code contributions are welcome :)

2.6.4 Development

To set up mario for local development:
1. Fork mario (look for the “Fork” button).

2. Clone your fork locally:

’git clone git@github.com:your_name_here/mario.git

3. Create a branch for local development:

’git checkout =b name-of-your-bugfix—or-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

44 Chapter 2. Contents

https://github.com/python-mario/mario/issues
https://github.com/python-mario/mario
https://tox.readthedocs.io/

mario, Release 0.0.154

tox

5. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes.
git push origin name-of-your-bugfix—or-feature

6. Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.
For merging, you should:

1. Include passing tests (run tox)'.

2. Update documentation when there’s new API, functionality etc.

3. Add afile in changelog.d/ describing the changes. The filename should be {id}. {type} .rst, where
{id} is the number of the GitHub issue or pull request and {type} is one of breaking (for breaking
changes), deprecation (for deprecations), or change (for non-breaking changes). For example, to add a
new feature requested in GitHub issue #1234, add a file called changelog.d/1234.change. rst describ-
ing the change.

4. Add yourself to AUTHORS . rst.

Tips

To run a subset of tests:

’tox —e envname —--— pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

’detox

2.7 Authors

* mario contributors - https://github.com/python-mario/mario

2.8 Changelog

Changes for the upcoming release can be found in the “changelog.d” directory in our repository.

LIf you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.
It will be slower though ...

2.7. Authors 45

https://github.com/python-mario/mario
https://github.com/python-mario/mario/tree/master/changelog.d
https://travis-ci.org/python-mario/mario/pull_requests

mario, Release 0.0.154

2.8.1 0.0.153 (2019-08-07)
Changes

* Add write-json-array command. #200

2.8.2 0.0.152 (2019-08-06)

Backward-incompatible Changes

¢ Remove read-csv-dicts —no-header option. #193

2.8.3 0.0.151 (2019-08-04)

No significant changes.

2.8.4 0.0.150 (2019-08-03)

No significant changes.

2.8.5 0.0.149 (2019-08-03)

No significant changes.

2.8.6 0.0.148 (2019-08-03)

Changes

¢ Add read-yaml-array command. #172

2.8.7 0.0.147 (2019-08-02)

Changes

* Add read-json-array command. #170

46 Chapter 2. Contents

https://github.com/python-mario/mario/issues/200
https://github.com/python-mario/mario/issues/193
https://github.com/python-mario/mario/issues/172
https://github.com/python-mario/mario/issues/170

mario, Release 0.0.154

2.8.8 0.0.146 (2019-08-02)
Changes

 Versions of all dependencies are pinned to avoid accidental breakages from upstream changes. #167

2.8.9 0.0.145 (2019-08-01)

No significant changes.

2.8.10 0.0.144 (2019-07-30)

No significant changes.

2.8.11 0.0.143 (2019-07-30)
Changes

¢ Add read and write commands for csv, toml, json, xml, yaml.

2.8.12 0.1.0 (2019-07-15)

Changes

¢ First release on PyPI.

29 Q&A

2.9.1 What’s the status of this package?

» This package is experimental and is subject to change without notice.

¢ Check the issues page for open tickets.

29. Q&A 47

https://github.com/python-mario/mario/issues/167
https://www.github.com/python-mario/mario/issues

mario, Release 0.0.154

2.9.2 Why another package?

A number of cool projects have pioneered in the Python-in-shell space. I wrote Mario because I didn’t know these
existed at the time, but now Mario has a bunch of features the others don’t (user configuration, multi-stage pipelines,
async, plugins, etc).

https://github.com/Russell9 1/pythonpy
http://gfxmonk.net/dist/doc/piep/
https://spy.readthedocs.io/en/latest/intro.html
https://github.com/ksamuel/Pyped
https://github.com/ircflagship2/pype
genindex

modindex

search

48

Chapter 2. Contents

https://github.com/Russell91/pythonpy
http://gfxmonk.net/dist/doc/piep/
https://spy.readthedocs.io/en/latest/intro.html
https://github.com/ksamuel/Pyped
https://github.com/ircflagship2/pype

Index

Symbols

—autocall, —-no—-autocall
mario-apply command line option, 18
mario—async—apply command line
option, 21
mario—async-filter command line
option, 22
mario-async-map command line
option,23
mario—async-map-unordered command
line option, 24
mario—eval command line option, 19
mario-filter command line option, 19
mario-map command line option, 20
—-base—-exec-before <base_exec_before>
mario command line option, 17,33
—dialect <dialect>
mario-read-csv-dicts command line

option, 24

mario-read-csv-tuples command line
option, 25

mario-write-csv-dicts command line
option, 28

mario-write-csv-tuples command

line option, 29
—exec—-before <exec_before>

mario command line option, 17,33

mario—apply command line option, 18

mario—async-apply command line
option, 21

mario—async—filter command line
option, 22

mario—async-map command line
option, 23

mario-async-map-unordered command
line option, 24

mario-eval command line option, 19

mario-filter command line option, 20

mario—-map command line option, 20

mario-reduce command line option, 2l
-header, —-no-header
mario-write-csv-dicts command line
option, 28
—-max—concurrent <max_concurrent>
mario command line option, 17,33
—-pretty, —-no-pretty
mario-write—Jjson command line
option, 29
mario-write-json—-array command
line option, 30
mario-write-xml command line
option, 31
-process—-namespaces
mario-read-xml command line option,
27
-sep <sep>
mario-read-text command line
option, 26
-version
mario command line option, 17,33

C

CODE

mario-apply command line option, I8

mario—async-apply command line
option, 21

mario—async-filter command line
option, 22

mario—async-map command line
option, 23

mario—async-map-unordered command
line option,?24

mario—eval command line option, 19

mario-filter command line option, 20

mario-map command line option, 20

F

FUNCTION_NAME
mario-reduce command line option,?2l

49

mario, Release 0.0.154

M

mario command line option
-base—-exec-before
<base_exec_before>, 17,33
—exec-before <exec_before>, 17,33
-max—concurrent <max_concurrent>, 17,
33
-version, 17,33
mario—apply command line option
—-autocall, —-no-autocall, 18
—-exec—before <exec_before>, 18
CODE, 18
mario—-async-apply command line option
—autocall, —-no-autocall,?2l
—-exec-before <exec_before>, 21
CODE, 21
mario-async-filter command line option
—autocall, -no-autocall,?22
-exec-before <exec_before>, 22
CODE, 22
mario—async-map command line option
—autocall, —-no-autocall,?23
—exec-before <exec_before>, 23
CODE, 23
mario—async-map-unordered command line
option
—autocall, -no-autocall, 24
—exec-before <exec_before>, 24
CODE, 24
mario-eval command line option
—-autocall, —-no-autocall, 19
—exec—before <exec_before>, 19
CODE, 19
mario-filter command line option
—autocall, -no-autocall, 19
—-exec-before <exec_before>, 20
CODE, 20
mario-map command line option
—autocall, —-no-autocall, 20
—exec-before <exec_before>, 20
CODE, 20
mario-meta-pip command line option
PIP_ARGS, 32
mario-meta-test command line option
PYTEST_ARGS, 32
mario-read-csv-dicts command line
option
—dialect <dialect>,?24
mario-read-csv-tuples command line
option
—-dialect <dialect>,?25
mario-read-text command line option
-sep <sep>, 26
mario-read-xml command line option

-process—namespaces, 27
mario-reduce command line option
—-exec-before <exec_before>, 2l
FUNCTION_NAME, 21
mario-write-csv-dicts command line
option
—dialect <dialect>, 28
-header, —-no-header, 28
mario-write-csv-tuples command line
option
—dialect <dialect>,?29
mario-write-json command line option
-pretty, —-no-pretty,?29
mario-write—-Jjson—-array command line
option
-pretty, —-no-pretty,30
mario-write-xml command line option

-pretty, —-no-pretty, 3l
PIP_ARGS
mario-meta-pip command line option,
32

PYTEST_ARGS
mario-meta-test command line
option, 32

50

Index

	Mario: Shell pipes in Python
	Features
	Installation
	Quickstart
	Configuration
	Plugins
	Q & A

	Contents
	Mario: Shell pipes in Python
	Installation
	Async execution
	Command reference
	Configuration
	Contributing
	Authors
	Changelog
	Q & A

	Index

